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Abstract
Random variables T = {Tl,...,Tn} are associated if
Cov(f(T),g(I)] 20 for all increasing f,g for which the covariance

exists. Tn+1 is stochastically increasing in Tl”“'Tn if

P[Tn+l>tn+1|T1=t1,...,Tn=tn] is increasing in t,...,t_ for each

fixed t In this paper, results of the following type are derived:

n+l1’

If Ti is stochastically increasing in Tl""’Ti-x for i = 1,...,n,

then T ,...,T are associated. Examples are given of the application
1 n

of these results to reliability models involving various types of

maintenance.
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Generating Associated Random Variables

1. Introduction

A set of random variables I’= {Tl""’Tn} are said to be
assoctated, if Cov[f(I),g(I)] 2 0 for all increasing functions f,g
for which the covariance exists (an increasing function is a function which
is nondecreasing in each of its arguments). Esary-Proschan-Walkup
(hereafter referred to as E-P-W) (1967) develop the basic properties of
associated random variables and present some applications [see also E-P-W
(1966) for applications to reliability theory]. Tukey (1958) discusses the
notion of positive regmession depcndcnee of T, on T,, defined by the
property that P[T2>t2|T1-t1] is increasing in t, for each fixed t,.
Lehmann (1966) discusses several forms of bivariate dependence, including
positive regression dependence (but not bivariate association), shows their
relationships, and gives a number of applications. Esary and Proschan

(1967) discuss the relationships between bivariate association and the

forms of bivariate dependence considered by Lehmann,

It is shown in E-P-W (1967) that positive regression dependence of T

on T1 implies association tetween T1 and T,. In the present paper we

deflide oo Harbars ehaat lead ln Snemacing in TioeeenT it
P[Tn+. tn+:'Tl=t1""'Tn=tn] is increasing in tl,...,tn for each fixed
tn+1, and show:

el
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Theorem 1.1. Let Tl""’Tn be associated. Let Tn+1 be stochastically
increasing in Tl""’Tn° Then Tl""’Tn+1 are associated.

We say "stochastically increasing" rather than the previously introduced
"positive regression dependent" in order to have a terminology consistent
with the usual notion of stochastic ordering, which we find it convenient
to employ.

Lehmann (1967), Example 1, considers the construction S; = h,(u,,T),
S5, = hz(Uz,T), where U;» Uy, T are independent and h,, h, are functions

increasing in T. We show:

Theorem 1.2. Let Tl""’Tn be associated. Let Si = hi(ui’Tl""’Tn)’
i=1,...,m, where Ul""'Um are mutually independent and also inde-
pendent of Tl""’Tn and h1 is increasing in Tx""’Tn' Then

Sl....,Sm are assoclated.

To prove Theorems 1.1 and 1.2 we consider a more general result
(Theorem 3.1, or alternately Theorem 3.4) which includes both as special

cases.

This investigation is primarily motivated by an implication of Theorem
1.1; random variables T;""'In are associated if each T1 is stochastically

increasing in Tl""’T This fact is useful in reliability analyses in-

i-;°
volving maintenance, spares, and queueing for repair. See Section 4 for
examples. We will discuss these applications in more detail in a forth-

coming document on maintenance models.
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A, Representation of Stochastically Increasing Random Variables

let S and T be random variables. Let § = {Sl,...,Sn} and

T = {Tl,...,Tn} be sets of random variables. S 1is ctockastically equal
to T, written S = Stz, if § and T have the same probability distri-

bution. S 1is stochastically less than T, written S_<StT, if

P[S>u] 2 P[T>u] for all wu. S is stochastically increasing in T,

written S*st in T, if P[S>uLIﬁ£(1)] b P[S>u]I:£(2)] for all

t(l) f£(2), i.e., t(l) 5 t§2),

i i=l,c|-’no

~

Let Elz = t denote a set of random variables with the conditional

probability distribution of g, given that I=rt.

~

We will use the following readily verified facts without further

reference. §,T = sté:z is equivalent to §|I- 6, = St_g'lz =t for all
t. Stst in I is equivalent to SII = £(1) i StS]I = £(2) for all

(D ¢ @

~

. f(g,;l‘_)lz =L EF = Stf(g,‘g)lz = t, for any function f(z,t).

The following lemma is a variation on a basic result due to Lehmann

(1959), p. 73.

Lemma 2,1. Let S + st in I. Then there exists an increasing function

h(u,t), such that 5,T =t h(U,I),Z, where U 1is a random variable

independent of T.

Proof. Let Ft be the distribution function of S:Z = t; laekp
Ft(s) = P[S;s}~=£]. Let h(u,pt) = inf{s:u:Ft(s)}. h is increasing

in u by its definition. S tst in T implies h(u,L(l)) < h(u,t(z))
L(l) ‘ ,5(2)‘

for < Thus h 1is increasing in t. Since Ft is

~

= e A e A
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continuous from the right in s, h(u,t) < s <=>u = Ft(s). Let U

be uniformly distributed on [0,1}. Then P[h(U,t) = s] = P[USFt(s)] = Ft(s),

i.e., h(U,L) = StSII = t. Let U be independent of T. Then
h(U,'E’) IE = il = st h(U,E). Thus
s|T=1t=°hU,p =" nU,pT=t

S* hu, DT = t.
It follows that S,T = °% n(u,1),I. ||

It is immediate that if S = 5 h(U,Z), where h(u,t) is increasing

in t and U is independent of I, then S * st in I.

Syse-+,S ~ are conditionally independent, given that T = t, if

1*°
é:ls t = St{sllzs£,...,sm|1= £}, where

Slil = £,...,S fT =t are assumed to be mutually independent.

Corollary 2.2. Let S 10 ’Sm be conditionally independent, given

I=1t, for all t. Let Si * st in I, i=1,...,m Then chere exist

increasing functions hl""’hm and mutually independent random variables

U,...,U_  that are independent of T, such that
1 m ~
st
$.1= % .p,h LD L
. st
Proof. Since Si t st in T, set Si._'[_- hi(Ui’I)’I- in accordance
with Lemma 2.1. Then ST =t = %%h (U,0). Let U,...,U be mutually

independent. Then since Sl”"’sm are conditionally independent, given

= t,
~ ~




St
SlT=1t- {hl(Ul,L),...,hm(Um,£)}
st
R LA CAN TR GRS T t
t
= {hl(ul,g),...,hm(um,p}[g = t.
Thus S, T = S%{h (u,T) h (U ,T) ,T. ||
~,~ 1 1’~"“’m ml~ ’~‘
Teorem 2.3. Let Sl,...,Sm be conditionally independent, given
I t, for all L. Let Si *+ st in Ii=1,...,m Let f(f',‘g) be
an increasing function. Then fQﬁ%I) + st in T.
Proof, Set §,T = St{h (U ,T)yeee,h (U ,T)},T in accordance with
—— ~ T~ 1 1~ m mas ~
Corollary 2.2, Let 5(2,5) = f[hl(u"£)""’hm(um’£)*£]' Then £ ig
increasing, and f(§mz) = Stg(gnz). For L(l) S £(2)
1 t t
£(U,D [T = ,g( ) o 5(2,5(1))12" 5(1) = Sfeu,e )

In

Thus  ¢(U,T) * st 1in L i.e., £(S,T) * st in To of]

3 Stochastically Increasing Random Variables, and Association

Theorems 1.1 and 1.2 are both special cases of:

Theorem 3.1. Let Tl""’Tn be associated. Let Sl,...,Sm

ditionally independent, given £ =t, for all L. Let Si

i=1,...,m. Then Sl,...,Sm, Tl""’Tn are associated.

+ st

in

® qy, D) . - D . *teu,ml1 =@

be con-

5

Proof A. Set :ﬁﬂl = St{hl(Ul,‘I),...,hm(Um,‘:I_‘)},"\r_ in accordance with

Corollary 2.2, Since Ul,...,Um are mutually independent, then Ul

are associated [E—P-W(l967), Thecrem 2.1].  Since E,Z are independent,




then U

1""’Um’ Tl""’Tn are associated [E-P-W(1967), Property P2].
Let f(i,t), g(g,'t\:') be increasing functions such that Cov[f(i,z),g(i,z)]
exists. lLet {,(2,‘5) = f[hl(ul’£)""’hm(um’£) ,£],

n(u,t) = g[hl(ul,t),...,hm(um,s_) ,£]. £,n are increasing functions, and

£(S,D,3S,D = ST LD ,n(U,D. Thus
Cov[£($,T),8(S,T)] = Cov[£(Y,T),n(Y,D] 2 0,
and so S ,...yS _, Tjy...,T  are associated. H

We find the expectation of a function £(S,I) by first conditioning

on 1, if@.,
Ef(g,z) = E_E l

where ET denotes expectation over the distribution of I, and ES|T
denotes expectation over the conditional distribution of S, glven a fixed

TC

~

Proof B. Let f(ﬁ.’.E.)' g(£,£) be increasing functions such that

Cov[£(S.T),8(S,T)] exists. Then, dropping arguments,

(3.1) Cov[f,g] = Efg - EfEg
" Erfgix®® - {Brfg|ntt By pel
= E~E2l~fg - E~{EE|2fE£|~g}
* EqlBs|1Eg 18l - {Fgfg 1 HEqEg) na)
= E~ Covil:l;[f,g] + CovI[E£I~f,E£l~g].
t
Let . = I e S,IL =t Since V...,V

are indcependent, Vl,...,Vm are asso«lated [E-P-W(1967), Theorem 2.1].




Then {£(5,D),8(8,D}T =1t = *{£(3,0,880HT =t =°" £(V,0), 8(V,8),

and

Cové | -

~

[£(5,1),8(S,1)] = Cov[£(V,0),g(V,t)] 2 0,

by the definition of association. Thus

>
Let X(L) = E§—|~=£f(§,p, u(£) = E,,S,[Ifig(i’l)’ Since f(g,z) + st

in T, g(g,l) t st in T by Theorem 2.3, then A(E'),u(’g) are increasing

functions. Since Tl""’Tn are associated,

(3.3) CovlEg) (8D oEg|8(8,D 1 = CovIA(D,u(D] 2 0.

(o B e A

From (3.1), (3.2), and (3.3), Cov[£(S,T),8(S,I)] 2 0, so that

Sl""’sm’ Tl""’Tn are associated. ||

The following multivariate definitions of "stochastically less than"
and "stochastically increasing" are of interest in the present context,

and also because of their apparent relevance to reliability theory:

Definition 3.2. S is stochastically lcss than E', written S §St _§",
if f(g) '_St f(§") for all increasing functions f(g).
Definition 3.3. S is stocnastically increasing in T, written S t st

in T, if £(S) *t st in T for all increasing functions f(s).

It is immediate that S tst in T is equivalent to

(1) st (2) (1) . t(2)

SIT = : S'T =t
s oy la e 4 ~

for all t From Theorem 2.3, if

o




S......Sq are conditionallv independent, given I‘= L. for all L
and Si st in T, i=1,e..,m, then S t st in T, uvhere
S WS
= m
Lemraa 3,4, Let f(s&E) be an increcasing function. Let S * st in I.
Thea f(S,I) * st in T.
Proet, For ~(l) = t(z),
9 2
e = £ = %6 e,z = e <% rg, Py p -
2
2% g yip - 2P - 5t s - (2.

Thus ng,I)EI = Efl) = st f(S,I)fI'= £f2) for all E}l) : Efz), b Eh 'y
£(S,I) * st in T. ||

S_,...,Sm are e lilong. Dy aepoadel [ piven T=r, if
‘S ,...,Smr I =1t are associated.

Theorem 3.1 is a special case of:
Theorem 3.5. Let Tl""’Tn be associated. Let Sl""'sm be condi-

tiorally associated, given T = t, for all t. Let S * st in T.
- ~ ~ ~ ~ ~

Then S ,...,Sm, Tl""’Tn are ussociated.

The preoof follows the lines of Proof B of Theorem 3.1, using Lemma

1.4 in place of Theorem 2.3.

4. Applications and Examples

Random variables Tl""’Tn are SiconantllAdely e we T




Theorem 4 .1. Let Tl""’Tn be stochastically increasing in sequence.

Then Tl""’Tn are associated.

Proof. {Tl} is a set of associated random variables [E-P-W(1967),
Property P3]. Since T2 t st in Tl’ Tl’Tz are associated by Theorcm

1.1, Continuing by induction, using Theorem 1.1, T1""'Tn are associated. ll

A random variable T has a .J’c¢rcasing failure rate (DFR) distribution
[Barlow-Marshall-Proschan(1963)] if ?(t+u)/?(t) is increasing in t for

all u 2 0, where .F(t) = P[T>u].

T(l) el T(n) be the order statistics in a sample

VI VY

Example 4.2. Let

of size n from a DFR distribution. Let D1 = Tl and Di =

i=2,...,n0, Then Dl""’Dn are stochastically increasing in sequence.

Proof. Note that
- n-1i
F(d)+...+d +u) }

P[Diﬂ u!Dl=dl""’Di=di] - {_'Fk(dl+...+di)

is increasing in dl""’di for all u 2 0. Thus t st 1in

Di+1

Dl,...,D » and so Dl""’Dn are stochastically increasing in sequence. ||

1

It follows from Theorem 4.1 that Dl""’Dn are associated.

A stochastic process {X(t), t ¢ v} 1is accociated in <= if the
random variables X(tl),...,X(tk) are associated for all k and all
le .. .,tkl oo AN(Y), t o« 1} is star el Pl GRS Tw o S5E B D

.

if X(tl)""’x(tk) are stochastically increasing in sequence for all k and
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all {tl # | o R tk}(: 1. It is equivalent to say that {X(t), t ¢ 1}
is stochastically increasing in time if X(tk) + st in {X(tl),...,X(tk_l)}

for all 4t1 < aes < tk} C T.

Theorem 4.3. Let {X(t), t € T} be stochastically increasing in time.

Then {X(t), t ¢ 1} 1is associated in time.

Proof. For any k and {tl 2l ks tk} C T X(tl), noop X(tk) are
stochastically increasing in sequence. By Theorem 4.1 X(tl), Slelons X(tk)

are associated. Thus {X(t), t € T} is associated in time.|]

Theorem 4.4. Let {X(t), t € 1} be a Markov process. Let X(t,) t st
in X(t,) for all {tl < tz} C 1. Then {X(t), t e 1t} 1is stochastically

increasing in time.

Proof. Let {tl 4w < tk} c t. Since {X(t), t € 1} 1s a Markov

st

process, X(t)[{xX(t) = x, ..., Xt ) = xk_l} = X(tk)lx(tk_l) =X

all X., «..s X+ let x, h Yyr cees X S Yiem1* Since X(tk) + st

< St

in X(e, )y X(e ) [X(e ) =% 27 X()[X(t, ) =y, |. Then

st

X(tk)]{X(tl) = xl....,X(tk_l) - xk_l} = X(tk)lx(tk_l) = %o,

< st .
SR [XCE ) = Yoy 8t x(e ) [{x(r)) = YireensX(t,_) =y, ).

Thus X(t,) * st in {x(tl)'""X(tk-l)}' i.e., {X(t), t et} is

stochastically increasing in time. ||

Example 4.5. Let {X(t), t ¢ 1] bte a Markov process such that X(t) =0

or 1 for each t ¢ 1. Let
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PX(t) =1 | X(e,) = 1] = p(t ,t )

P[X(t,) = 0 | X(t) = 0] = q(t,t)

where p(tl,tz) + q(t;,t,) 21 for all {tl < tz} (ol o Then

{X(t), t € 1} is stochastically increasing in time.

Proof. For {tl < tz} C 1, set U(tl,tz) - St X(t2)|X(tl) =1,
V(t),tp) = = X(t,) |X(t,) = 0. Then P[V(t),t,) =1] =1 - q(t,t,)

: t
Sp(tpty) = PLUCE,,t)) = 1], d.e., V(t;,t;) S °0 U(t,t).  Thus

X(t,) * st in X(t;), and by Theorem 4.4 {X(t), t ¢ 1} 1is stochastically

increasing in time. H

In reliability theory, processes of the type considered in Example
4.5 are basic models for the performance of a device subject to alternate
failure and repair, where X(t) = 1 if the device is functioning at time
t, X(t) =0 if the device is failed at time t. If 1 = {0,1,...}
and p(k,k+l) = p, q(k,k+1) = q, then {X(t), t € 1] corresponds
to an alternating renewal process where time from repair to failure has a
geometric distribution with parameter p, and time from failure to repair
has a geometric distribution with parameter q. This geometric-geometric
performance process is stochastically increasing in time if p + q 2 1.

If 7 = [0,+) and
p(t;,t.) = (A+u)'l{p + 1 exp[-(A+u)(t‘_tl)]}
a(ty,e) = O A+ exp-Cn) (et ) 1,

then {X(t), t € T} corresponds to an alternating renewal process where
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time from repair to failure has an exponential distribution with parameter
>y and time from failure to repair has an exponential distribution with

parareter .. Since p(tl,tz) + q(tl,tz) 21 forall t, <t

1 2’A30’

L = 0, the exponential-exponential performance process is stochastically
increasing in time. It follows from Theorem 4.3 that the exponential-
exponential performance process and the geometric-geometric performance
process with p + q 2 1 are associated in time [cf. E-P-W(1966)].

Sone properties and applications in reliability theory of performance

processes that are associated in time are discussed in E-P-W(1966).

In the process of Example 4.5 {X(tl)’ X(tz)} are, for {tl < tz} cr,

stochastically representable by X(tl) and transition random variables

st st

U(tl,t:) =

X(t)) [ X(t)) =1, V(tl,tz) = x(cz)lx(:l) = 0, such

that X(tl). U(tl,tﬁ), V(tl,tz) are mutually independent.

U(t,,tp) =1

XMe) =1 @ >0 X(t,) =1

Xt)) =0 @ > @ X(t;) =0

st {X(t)), X(EDUCE €, + [1-X(e ) TV(ty,t5)}, and so

I Nt ) * st in X(tl) is equivalent to V(tl,tv) = st U(tl,tz). Setting

SX(t )y Nt )=

-

‘ v(e ,t ), \(tl't“) independent is convenient, but not essential to the

representation.
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In a frequently studied reliability model involving a complex of n
identical devices, the functioning devices are in various degrees of service
or standby for service, and the failed devices are in various degrees of
repair or standby for repair. In this model the basic descriptor of
performance is X(t) = the number of devices functioning at time t. The
following generalization of Example 4.5 covers a variety of cases in which
the process {X(t), t + 1} 1is stochastically increasing in time, and

thus associatel] in time.

Example 4.6, Let {X(t), t ¢ 1} be a Markov process such that
X(¢) =0 or 1 or ... or n for each t e 1. For all {tl <t }cn

let

R =.=St., .
X(t‘).h(tl) i Ll(tl’ta) + ...+ Li(tl,ts) + Vi+1(tl,t?) e Vn(tl,t‘),

i=0,...yn, where Ui(tl‘tﬂ) = (0 or 1, Vi(tl,t‘) =0 or 1, i=1,...,n,

{Ul(tl’t.)‘ \}(tl’ta)}' 5000 {Un(tl‘t;)’ vn(tl’t_)} are mutually inde-

pendent couples, and vi(tl’t?) S st Ui(t;'ts)' i=1,...,n. Then
{X(t), t « 1t 1is stochastically increasing in time.
Proof. Set

U, (t,,t) if i 2 3
Z(t)ix(t)=1-=-°5" { 3
oo ] Vj(tl,t_) if i3,

=l Since V(e s Uit st ), 2(e) ¢ stin X(e),
Let 2 (t ).....Z”(t )  be conditionally independent, given X(tl) =i,

i = O,s..,0. Then




—
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n

n
. st . ki, - :] - st . 5
E . l{/,j(t )lx(tl) if ;Z j:ll‘j(t-')slx“]) i,

J=

-
.
~
-
—~
—~
~

[

|

n
= 0o Thus NG )L X(L) = St;z Zj(t:))’X(tl)£° Since

j=1

:E: xi(t ) * st in X(tl) by Theorem 2.3, X(ty) + st in X(tl). fi

We illustrate the application of Examplie 4.6 for plans involving two
identical devices, n =2, where time is measured in discrete cycles, say
i = 10,1,...1. We suppose that devices fail or are repaired within
cvceles, and that devices are transferred from standby for service to

service, service to standby for repair, etc., between cycles.

P T ‘(:) filled second
. , - Lth
at end of k! cycle l@ filled first
service
"sockets"
levices failed ‘@ filled tirst
U
at end of k cvele (:) filled second
repair
"sockets"
time k

We view the experience ol a device within cach cycle as independent of
its e¥perience in preceding cveles, and dependent only on the tvpe of

wervice or repair it is subject to on that cycle,




il

Case 4.6(a).

=ali5E

Y

Uj(k,k+l) = 1
(:) Vo(k,k+l) = 1
Uj(k,k+l) = 0
@) =
‘ Vo(k,k+l) = 0
time k time

O standby for service

O service

O repair

(:) standby for repair

k+1

Assuming x(tk), Ul(k,k+1), Vz(k,k+1) mutually independent:

X(k+1) |X(k) = 2 = St

X(k+1) |X(k) = 1 = St

X(k+1) |X(k) = 0 = 5t @

Ul(k'k+l) + 1.

Ul(k,k+l) + Vz(k,k+1).

+ vz(k,k+1).

X(k+1) t st in X(k) by Example 4.6.

‘(:)semi-active service

(O active service

v:)active repair

Case 4.6(b). Us(k,k+l) = 1
[ O U (kD) = 1
V,OoktD) = 1
' O Vi, k) = 1

Uy (k,k+1) = 0
Uy(k,k+l) =0 -
O Vo(k,k+1) = 0

Vi(k,k+l) =0

O

o lo semi-active repair

time Kk

time

k +1

Assuming  X(k), Ul(k,k+1), U (k,k+1), V](k,k+]), vV o(k,k+1)

mutually
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independent:

2 = St U (k,kt1) + U (k1)

st

X(k+1) [ X(k)

n
[
(]

X(k+1) | X(k) U, (k,k+1) + V, (k,k+1) .

X(k+D) [X(k) = 0 = 5% v (k,kt1) + V, (k,k+1) .

By Example 4.6, X(k+1) * st in X(k) {if VG kt) < 55y (k) and
V, (ko k1) S 5Py (k,k4D), e.g., if U (k,kt1) = 5%y (i k1),

v (k,k+1) - St V,(kykt1), and V, (k,k+1) < °F U (k, k1), ||

Further applications of Example 4.6, e.g., to cases in which time

is measured continuously, will be considered in a forthcoming document.
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